

Maßnahmen zur Förderung der Gesundheit und Robustheit landwirtschaftlicher Nutztiere

Seit dem Haushaltsjahr 2014 gilt im Rahmen der Gemeinschaftsaufgabe "Verbesserung der Agrarstruktur und des Küstenschutzes" (GAK) der neue Fördergrundsatz "Förderung von Gesundheit und Robustheit landwirtschaftlicher Nutztiere".

Dieser Fördergrundsatz hat die vorherige GAK-Förderung "Maßnahmen zur Verbesserung der genetischen Qualität" ersetzt.

Nach Abstimmung eines Eckpunktepapiers auf Bundesebene hatte das Ministerium für Ländlichen Raum und Verbraucherschutz Baden-Württemberg entschieden, diesen Fördergrundsatz auch in Baden-Württemberg anzubieten.

Zusammen mit dem LKV Baden-Württemberg hat das Land Förderrichtlinien ausgearbeitet, die Grundlage für die Umsetzung waren.

Um die anvisierten Zuchtziele zu erreichen, wird jeder Teilnehmer an der MLP für die Erfassung von Merkmalen, die der züchterischen Verbesserung von Gesundheit und Robustheit landwirtschaftlicher Nutztiere dienen, unterstützt.

Gemäß dem Eckpunktepapier zur "Förderung der Verbesserung von Gesundheit und Robustheit landwirtschaftlicher Nutztiere" sind die nachfolgend genannten Merkmalskomplexe zu erheben und den LKV-Mitgliedsbetrieben im Rahmen der Milchleistungsprüfung bereitzustellen.

- » Merkmalskomplex "Stoffwechselstabilität": Fett-Eiweiß-Quotient und Harnstoffgehalt der Milch
- » Merkmalskomplex "Eutergesundheit": somatische Zellen und Beobachtungsstatus nach Zellzahlklassen
- » Merkmalskomplex "Robustheit": Exterieurbeurteilung (Stichprobe der Erstlaktierenden) und Geburtsverlauf
- » Merkmalskomplex "Fruchtbarkeit": Erstkalbealter, Zwischenkalbezeit, Anzahl Kalbungen und Totgeburtenrate
- » Merkmalskomplex "Nutzungsdauer": Nutzungsdauer der Abgangstiere (außer zur Zucht)
- » Merkmalskomplex "Hornlosigkeit": Identifikation von natürlich hornlosen Kälbern

Entsprechend dem GAK-Rahmenplan war die Förderung bis zum 31. Dezember 2016 befristet. Nachdem die Evaluierung

positiv beschieden wurde, kann die Förderung fortgesetzt werden.

Die Evaluierung fand auf Basis der in den Bundesländern erhobenen Daten statt.

Dazu wurde im Jahr 2016 die erste bundesweite Auswertung der Daten des Kalenderjahres 2015 durchgeführt.

Der LKV hat die notwendigen Zahlen aufbereitet und dem Ministerium für Ländlichen Raum und Verbraucherschutz Baden-Württemberg übergeben. Ebenso gingen diese Zahlen an den DLQ (Dachverband aller deutscher LKV). Der DLQ hat die Daten aller Landesverbände zusammengeführt und an das Friedrich-Löffler-Institut für Nutztiergenetik übergeben. In diesem Institut fand dann auch die positive Evaluierung statt, die wiederum Grundlage für die weitere Bereitstellung von Fördermitteln ist.

Nachfolgend werden die Ergebnisse aus Baden-Württemberg vom Kalenderjahr 2019 vorgestellt.

Stoffwechselstabilität

Im Merkmalskomplex Stoffwechsel werden die Merkmale Fett-Eiweiß-Quotient und Harnstoffgehalt dargestellt. Diese Kennwerte werden im Rahmen der Milchleistungsprüfung für die Beurteilung der Fütterung und des Stoffwechselzustandes auf Herden- sowie Einzeltierebene verwendet.

Fett-Eiweiss-Quotient

Der Quotient aus Fettgehalt und Eiweißgehalt wird über alle im Prüfjahr erfassten Einzelgemelke ermittelt. Der Kennwert sollte im Optimalbereich zwischen 1,0 und 1,5 liegen. Werte über 1,5 deuten beim Einzeltier auf einen erhöhten Abbau von Körperfett und eine mögliche Ketose hin. Werte unter 1,0 können Hinweise auf einen Strukturmangel in Verbindung mit einer vorliegenden Acidose geben.

Anteil Prüfergebnisse der Einzeltiere an Fett-Eiweiß-Quotient-Klassen in unterschiedlichen Laktationsstadien (in %)

Tage nach	FEQ <1,0		FEQ 1.0-1,5		FEQ >1,0	
der Kalbung	%	Anzahl	%	Anzahl	%	Anzahl
0-30	8,5	16 509	74,9	145 603	16,6	32350
31-100	11,7	62 957	81,0	435 979	7,3	39363
101-200	14,0	102 789	82,8	607 010	3,1	22979
201-300	12,0	77 946	85,3	553 838	2,7	17166
>300	11,0	47 241	86,6	371 134	2,4	10327

Harnstoffgehalt

Der Harnstoffgehalt wird wie der Fett-Eiweiß-Quotient über alle im Prüfjahr erfassten Einzelgemelke erhoben. Der Wert wird in mg/l Milch angegeben und sollte im Optimum etwa 150 bis 300 mg je Liter Milch betragen. Werte unter 150 mg je Liter Milch weisen auf einen Rohproteinmangel in der Futterration und eine negative ruminale N-Bilanz hin. Werte über 300 mg je Liter Milch können auf einen Rohproteinüberschuss in der Futterration und auf eine positive ruminale N-Bilanz hindeuten.

Tage nach	<150 mg/ml		150 – 300 mg/m		>300 mg/ml	
der Kalbung	%	Anzahl	%	Anzahl	%	Anzahl
0-30	12,8	24 910	77,2	150 085	9,9	19 314
31-100	10,7	57 611	77,9	419 002	11,4	61 493
101-200	8,9	65 301	77,8	569 745	13,3	97 506
201-300	9,5	61 446	77,8	504 378	12,8	82 890
>300	11,8	50 337	77,1	330 141	11,2	47 969

Eutergesundheit

Der somatische Zellgehalt wird über alle im Prüfjahr erfassten Einzelgemelke erhoben und in Zellen je ml Milch angegeben. Ein erhöhter Zellgehalt wird in der Regel durch das Eindringen und die Vermehrung von Krankheitserregern in das Eutergewebe verursacht. Als Reaktion auf die Krankheitserreger strömen körpereigene Abwehrzellen in das Eutergewebe ein. Die Zellzahlmessung nutzt diese Immunreaktion als diagnos-

tischen Parameter für eine Erhebung des Eutergesundheitsstatus.

Im Rahmen eines kontinuierlichen Eutergesundheitsmonitorings auf Herden- und Einzeltierebene wird ein Wert von 100.000 Zellen je ml Milch als Orientierungswert verwendet. Zellzahlen von 20.000 bis 100.000 sind als physiologischer Normalbereich definiert. Werte von mehr als 100.000 Zellen je ml Milch deuten auf Veränderung von einer normalen zellulären Abwehr zu entzündlichen Prozessen hin. Der Orientierungswert ist Grundlage für ein Frühwarnsystem, das die Erkennung möglichst vieler Neuerkrankungen ermöglicht. Der Zellgehalt für sich betrachtet ermöglicht keine konkrete Einordnung eines Einzeltieres in gesund oder krank und darf nicht alleinige Grundlage für eine Behandlung oder Merzung einer Kuh sein. Vor einer solchen Entscheidung sind in jedem Fall klinische Untersuchungen durchzuführen und gegebenenfalls der Rat eines Tierarztes hinzuzuziehen.

Anteil Prüfergebnisse der Einzeltiere in Zellzahlklassen (Zellzahlklassen in 1000 je ml) in %

Zellzahlklassen							
	<100	101 - 200 201 - 400		>400			
%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl
50,3	1 278 822	21,5	545 281	14,1	358 657	14,1	359 075

Robustheit

Im Komplex Robustheit werden die Exterieurbeurteilungen als Stichprobe der Erstlaktierenden und der Geburtsverlauf dargestellt.

Exterieurbeurteilung

Die Exterieurbeurteilungen werden von den Zuchtorganisationen durchgeführt und dem LKV zur Berichterstattung im Rahmen der Milchleistungsprüfung bereitgestellt. Die Erfassung von Exterieurdaten ist Voraussetzung für die Ermittlung von Zuchtwerten in den Merkmalsbereichen Milchtyp, Körper, Fundament und Euter. Gesunde und robuste Kühe zeichnen sich durch einen funktionalen Körperbau aus, der Grundlage für eine hohe und stabile Leistung über viele Laktationen ist.

Geburtsverlauf

Der Geburtsverlauf wird im Rahmen der Erfassung von Kal-

Durchschnittliche Exterieurbeurteilung aller beurteilten Tiere für den jeweiligen Merkmalskomplex

Rasse	Anzahl	Milchtyp	Körper	Fundament	Euter
Holstein	5 146	82,0	82,3	80,9	81,7
Rasse	Anzahl	Rahmen	Bemuskelung	Fundament	Euter
Fleckvieh	7 568	80,4	80,2	80,3	80,2
Rasse	Anzahl	Rahmen	Becken	Fundament	Euter
Braunvieh	3 035	81,3	81,2	80,8	80,8

bemerkmalen bei der Milchleistungsprüfung erhoben. Die Angaben zum Geburtsverlauf werden im Rahmen der Zuchtwertschätzung bei den Kalbemerkmalen berücksichtigt. Erwünscht ist die leichte Abkalbung ohne menschliche Hilfe

Anteil Meldungen nach Geburtsverlaufsklassen

Geburtsverlauf					
Anzahl	keine Ang.	leicht	mittel	schwer	Operation
303 999	6,3	78,7	12,9	2,0	0,1

Fruchtbarkeit

Im Komplex Fruchtbarkeit werden das Erstkalbealter, die Zwischenkalbezeit, die Anzahl Kalbungen und die Totgeburtenrate, differenziert nach Kühen und Färsen, erhoben. Für die Ermittlung der Reproduktionsdaten sind die Erfassung von Kalbedaten sowie die Erhebung von Besamungs- und Bedeckungsdaten Voraussetzung.

Erstkalbealter und Zwischenkalbezeit

Bei der Ermittlung des Erstkalbealters werden die Kalbungen aller im Prüfjahr abgekalbten Färsen berücksichtigt. Das Merkmal wird in Monaten angegeben.

Die Zwischenkalbezeit in Tagen umfasst den Zeitraum zwischen erfolgter Kalbung im Prüfjahr und vorhergehender Kalbung.

Erstkalbealter (EKA, in Monaten) und Zwischenkalbezeit (ZKZ, in Tagen)

Anzahl	EKA	ZKZ
286 168	28,6	407

Totgeburtenrate

Die Totgeburtenrate beschreibt den Anteil aller totgeborenen Kälber einschließlich der innerhalb der ersten 48 Lebensstunden verendeten Kälber an allen im gleichen Zeitraum geborenen Kälbern.

Totgeburtenrate (in %)

Anzahl	Färsen	Kühe
303 999	9,5	6,3

Nutzungsdauer

Im Komplex Nutzungsdauer wird die Nutzungsdauer der im Prüfjahr abgegangenen Kühe dargestellt.

Nutzungsdauer

Die Nutzungsdauer in Monaten wird über die Summe der Futtertage aller im Kalenderjahr abgegangenen Kühe (außer Abgang zur Zucht) ermittelt, die durch die Anzahl der abgegangenen Kühe (außer Abgang zur Zucht) im gleichen Zeitraum geteilt wird.

Nutzungsdauer der (ohne zur Zucht) abgegangenen Tiere (in Monaten)

Anzahl	Nutzungsdauer
85 926	40,0

Hornlosiakeit

Eine gezielte Verbreitung des Hornlos-Gens ist inzwischen zum wesentlichen Bestandteil aller Zuchtprogramme geworden. Im Komplex Hornlosigkeit sollen die als natürlich hornlos identifizierten Kälber eines Jahrgangs ermittelt werden. Die Erfassung des Merkmals erfolgt über den LKV in enger Abstimmung mit dem Zuchtverband.

Hornlosigkeit - Anteil genetisch hornloser Kälber an allen lebend geborenen Kälbern (in %)

Anzahl Lebend geborene Kälber	Anzahl Genetisch hornlose Kälber	% Genetisch hornlose Kälber
281 664	20 633	7,3